# LPMS-USBAL2 Quick Start Guide ver. 1.1



LP-RESEARCH Inc.

http://www.lp-research.com

## **Table of Contents**

| I.   | Introduction                  | 1 -   |
|------|-------------------------------|-------|
| II.  | Document Revision History     | 2 -   |
| III. | Device Specification          | 3 -   |
| IV.  | Operation                     | 6 -   |
|      | OpenMAT Software Installation | 6 -   |
|      | Connection with PC            | - 8 - |



#### I. Introduction

Welcome to the LP-RESEARCH Motion Sensor LPMS-USBAL2 Quick Start Guide.

In this documentation we will explain everything you need to know to quickly set up the LPMS-USBAL2 hardware, install its software and get started with sensor data acquisition. We have put a lot of effort into making the LPMS-USBAL2 a great product, but we are always eager to improve and work on new developments. If you have any further questions or comments regarding this documentation please feel free to contact us anytime.

For more information on the LPMS-USBAL2 or other product series, please refer to datasheets and user manuals, available from the LP-RESEARCH website at the following address: http://www.lp-research.com.



# II. Document Revision History

| Date       | Revision | Changes                                                              |
|------------|----------|----------------------------------------------------------------------|
| 2016-06-01 | 1.0      | - Initial release.                                                   |
| 2016-10-01 | 1.1      | - Add the tables of relations between baudrate and data update rate. |



# III. Device Specification

**Table 1. LPMS-USBAL2 Main Specification** 

| Parameters LPMS-USBAL2         |                                                                                 |  |
|--------------------------------|---------------------------------------------------------------------------------|--|
| Output range of Euler angle    | Roll: ±90°; pitch: ±180°; Yaw: ±180°                                            |  |
| Bandwidth                      | 400Hz                                                                           |  |
| Resolution                     | 0.01 °                                                                          |  |
| Accuracy                       | <0.5° (Static), <2° RMS (Dynamic)                                               |  |
| Max. instant impact (0.1 ms)   | 10,000 g                                                                        |  |
| Output data type               | Raw data/Euler/Quaternion/Linear acceleration/Air pressure/Altitude/Temperature |  |
| Internal sampling rate         | 400 Hz                                                                          |  |
| <b>Communication interface</b> | USB                                                                             |  |
| Max. baudrate                  | 921600 bps                                                                      |  |
| <b>Communication protocol</b>  | LPBUS                                                                           |  |
| Size                           | 48x40x25 mm                                                                     |  |
| Weight 67.5 g                  |                                                                                 |  |
| Max. data update rate 400Hz    |                                                                                 |  |
| Power consumption 155mW@3.3V   |                                                                                 |  |
| Power supply                   | 5V DC                                                                           |  |
| Working temperature            | -40~+80 ℃                                                                       |  |
| Connector                      | Micro USB-B                                                                     |  |



**Table 2. Accelerometer Specification** 

| Parameters                                                     | Typical Value                   | Unit   |
|----------------------------------------------------------------|---------------------------------|--------|
| Measurement range                                              | ±2/±4/±8/±16                    | g      |
| Sensitivity                                                    | 0.061/0.122/0.244/0.488         | mg/LSB |
| Linear acceleration sensitivity change vs. temperature         | ±l                              | %      |
| Linear acceleration<br>typical zero-g level offset<br>accuracy | ±40                             | mg     |
| Linear acceleration zero-rate change vs. temperature           | ±0.5                            | mg/℃   |
| Acceleration noise density                                     | 90 (FS= $\pm 2$ g ODR = 104 Hz) | μg/√Hz |

## **Table 3. Gyroscope Specification**

| Parameters                                                  | Typical Value              | Unit        |
|-------------------------------------------------------------|----------------------------|-------------|
| Measurement range                                           | ±125/±245/±500/±1000/±2000 | dps         |
| Sensitivity                                                 | 4.375/8.75/17.50/35/70     | mdps/LSB    |
| Angular rate sensitivity change vs. temperature             | ±1.5                       | %           |
| Angular rate typical zero-rate level                        | ±10                        | dps         |
| Angular rate typical zero-rate level change vs. temperature | ±0.05                      | dps/℃       |
| Rate noise density                                          | 7                          | mdps/√Hz    |
| Angular random walk                                         | 9                          | degree/hour |

## **Table 4. Magnetometer Specification**

| Parameters        | Typical Value       | Unit      |
|-------------------|---------------------|-----------|
| Measurement range | ±4/±8/±12/±16       | Gauss     |
| Sensitivity       | 6842/3421/2281/1711 | LSB/gauss |
| Zero-gauss level  | ±1                  | gauss     |

### LPMS-USBAL2 Quick Start Guide ver. 1.1

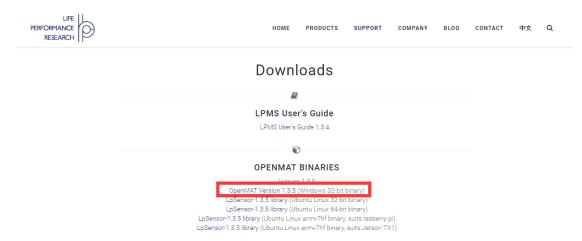
| RMS noise               | X axis | 3.2   | mgauss |
|-------------------------|--------|-------|--------|
| (Ultra-high-performance | Y axis | 3.2   | mgauss |
| mode)                   | Z axis | 4.1   | mgauss |
| Non-linearity           |        | ±0.12 | %FS    |

**Table 5. Pressure and Humidity Sensor Specification** 

| Parameters                                   | Typical Value | Unit     |
|----------------------------------------------|---------------|----------|
| Pressure measurement range                   | 300~1100      | hPa      |
| Temperature coefficient of offset            | ±1.5          | Pa/K     |
| Absolute accuracy pressure                   | ±1.0          | hPa      |
| Pressure sensitivity                         | 0.18          | Pa       |
| Pressure noise                               | 1.3           | Pa       |
| Humidity measurement range                   | 0~100         | %RH      |
| <b>Humidity accuracy</b>                     | ±3            | %RH      |
| Humidity latency<br>(10~90~10 %RH,<br>25 °C) | ±1            | %RH      |
| <b>Humidity sensitivity</b>                  | 0.008         | %RH      |
| <b>Humidity noise</b>                        | 0.02          | %RH      |
| Humidity stability<br>(10~90 %RH, 25 ℃)      | 0.5           | %RH/year |

 $Table \ 6. \ Relation \ between \ RS232 \ Baudrate \ and \ Max. \ Update \ Rate$ 

| Baudrate (bps) | Max. Update Rate (Hz) |
|----------------|-----------------------|
| 19200          | 10                    |
| 57600          | 50                    |
| 115200         | 100                   |
| 921600         | 400                   |

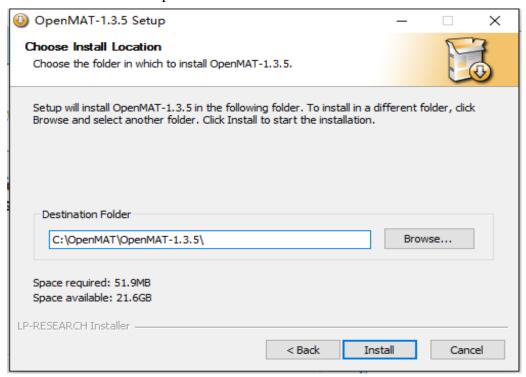



### IV. Operation

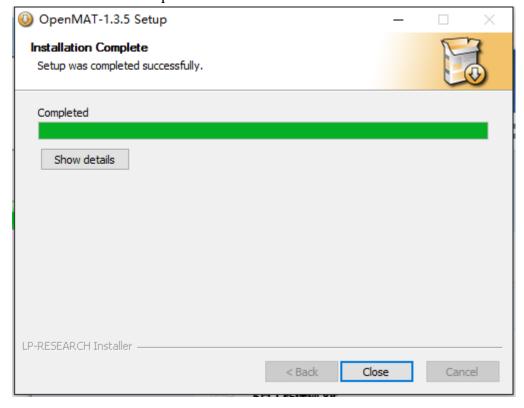
#### **OpenMAT Software Installation**

We offer windows OS based software called LpmsControl for users to easily manipulate the LPMS-USBAL2 sensor. The LpmsControl software is a sub program of OpenMAT software. Please choose a correct version of OpenMAT software from our homepage based on the operation system specification. The followings show an example of installing the OpenMAT software under Windows 7 32bit system.

1) Go to: http://www.lp-research.com/support/, and download the latest version of OpenMAT for the sensor, like OpenMAT Version 1.3.5 (Windows 32-bit binary) showed as below.

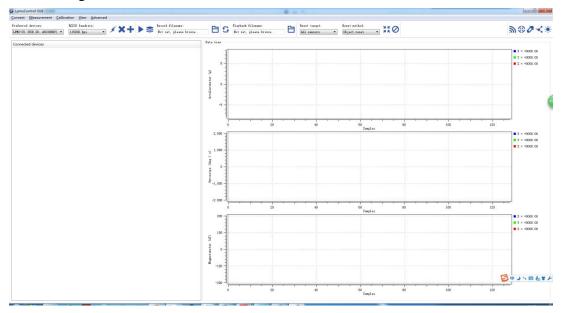



2) Run the installer after the download process is finished, and push the "I Agree" button for the next step.




#### LPMS-USBAL2 Quick Start Guide ver. 1.1

Push the "Browse" button to select the installation path of the program, and then push "Install" to start the installation process.




Push the "Close" button to complete the installation.





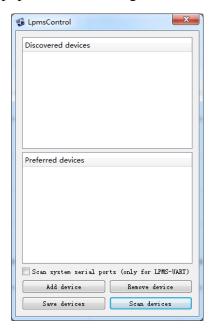
To run the LpmsControl software from the start menu of your windows system, you can see the following interface.



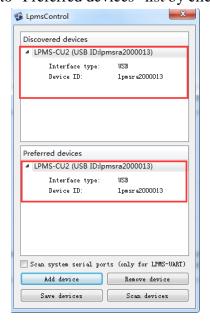
#### Connection with PC

Users can connect LPMS-USBAL2 to a PC via USB port. After plugging in, windows operation system will activate the installation of USB drivers automatically. USBXpress device will be showed up in the device manager if the driver has been installed successfully, seen as following.



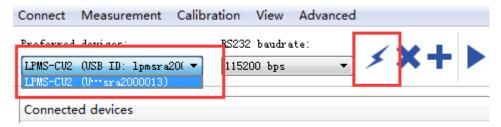

Please follow the instructions below to complete the remaining steps.

1) To select the "Add/remove sensor" under "Connect" menu or click the "+" button on toolbar of LpmsControl.

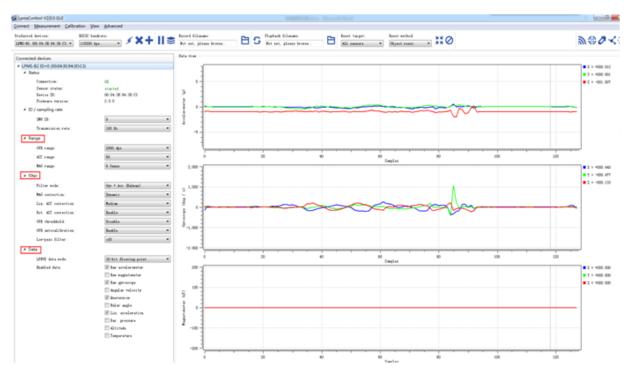





The "add device" window will pop out, as following.



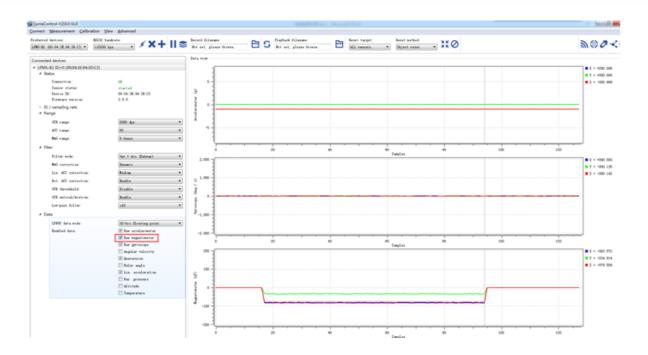

- 2) To click the "Scan devices" button and start the device discovery process. Please wait until the process is done.
- 3) To select the target sensor ID from the "Discovered devices" list, for example, "LPMS-CU2 (USB ID: lpmsra2000013)" in the following image.
- 4) To add the selected sensor to "Preferred devices" list by clicking the "Add device" button.






- 5) To click the "Save devices" button to save the preferred devices list, and return to main interface of LpmsControl.
- 6) To select the target sensor ID from the Preferred devices list, and click Connect function under "Connect" menu or click the lightning button on toolbar to connect the sensor.




After completing all the steps above, the LPMS-USBAL2 should have been connecting with windows system. Users can check all the data visualization and parameter settings of the sensor from LpmsControl.



On the left side of the main interface of LpmsControl, users can change the sensor settings, like measurement range, filter modes, data updating rate, etc. Moreover, the types of output data can be modified by checking or unchecking the check box of each parameter. For example, in the following image the "raw magnetometer" is checked so that the acquisition of magnetic data is enabled.



### LPMS-USBAL2 Quick Start Guide ver. 1.1



For more information, please refer to our product datasheets and product manuals.

Copyright © 2016, LP-RESEARCH Inc. All rights reserved. http://www.lp-research.com